Synthesis and structural characterisation of two $\boldsymbol{\eta}^{1}$-bonded N -phenylthioformamidate complexes of rhodium

Patricia A. M cE neaney, ${ }^{\text {a }}$ Trevor R. Spalding*, ${ }^{*}$ and George Ferguson*,b

${ }^{\text {a }}$ C hemistry D epartment, U niversity C ollege, C ork, I reland
${ }^{\mathrm{b}}$ C hemistry Department, U niversity of Guelph, Guelph, O ntario N 1G 2W 1, C anada

$\mathrm{SC}(\mathrm{H}) \mathrm{N}$ Ph ligands. H owever, the orientation of these ligands with respect to the $\mathrm{RhC}_{2} \mathrm{~B}_{3}$ or RhTeB_{4} moieties in each of the compounds is clearly different. The phenylthioformamidate group in compound $\mathbf{4}$ interacts solely with the rhodium atom of the $R \mathrm{hC}_{2} \mathrm{~B}_{9}$ cage, F ig. 1 , whereas in compound 6 there is also a

\ddagger Crystal data for 6. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~B}_{10} \mathrm{NP}_{2} \mathrm{RhSTe}$, orange needle, $0.40 \times 0.20 \times 0.20 \mathrm{~mm}, \quad M=761.15$, triclinic, $P \overline{1}, a=9.7040(13)$, $b=11.895(2), \quad c=14.4469(15) \quad \AA, \quad \alpha=76.211(11), \quad \beta=80.557(11)$, $\gamma=83.680(12)^{\circ}, \mathrm{U}=1593.2(3) \AA^{3}, \mathrm{Z}=2, \mathrm{D}_{\mathrm{c}}=1.587 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{M} 0-$ $\mathrm{K} \alpha)=0.7107 \AA^{\prime}, \mu(\mathrm{Mo} 0-\mathrm{K} \alpha)=1.616 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=752, \mathrm{~T}=294(1) \mathrm{K}$. D ata for 5450 reflections were collected and of these the 4402 with I $>2 \sigma(I)$ werelabelled 'observed'. $R\left(F_{0}\right)=0.0292, R^{\prime}\left(F^{2}\right)=0.0800$ for all measured data, $R\left(F_{0}\right)$ and $R^{\prime}\left(F^{2}\right)$ as for 4.

Structure solution of $\mathbf{4}$ and $\mathbf{6}$. Data were collected using an EnrafNonius CAD 4 diffractometer to a maximum θ of 27° using graphitemonochromated $\mathrm{M} 0-\mathrm{K} \alpha$ radiation. Data were corrected for L orentz, polarisation and absorption effects (from ψ scans). The structures were solved by Patterson and Fourier methods and refined by full-matrix least-squares calculations initially using the N RCVAX system of programs ${ }^{5}$ and finally with SHELXL 93^{6} using all F^{2} data. The H atoms were allowed for as riding atoms using the appropriate AFIX commands in SHELX 93. Diagrams were prepared with the aid of ORTEP ${ }^{7}$ and PLATON. ${ }^{8}$ Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata C entre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/334.

[^0]The complexes $\left[3-\left\{\eta^{1} \text {-SC(H)N Ph }\right\} \text {-3,3-(PM e } \mathrm{e}_{2} \mathrm{Ph}\right)_{2}-3,1,2$-closo$\left.\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ and $\left[2-\left\{\eta^{1}-\mathrm{SC}(\mathrm{H}) \mathrm{N} \mathrm{Ph}\right\}-2,2-\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}\right.$-2,1-closo$\mathrm{RhTeB}{ }_{10} \mathrm{H}_{10}$] have been structurally characterised using X-ray crystallography and are the first η^{1}-bonded thioformamidate complexes to be isolated.

Numerous metal complexes of ligands containing the S-C -N bond sequence have been characterised in the solid state. Reactions between isothiocyanates, R NCS, and metal hydrides usually lead to metal complexes with $\left[\eta^{2}-\mathrm{SC}(\mathrm{H}) N R\right]^{-}$ligands which are bonded through both $\mathrm{M}-\mathrm{S}$ and $\mathrm{M}-\mathrm{N}$ bonds. A typical example is $\left[\mathrm{ZrCl}\left\{\eta^{2}-\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\right\}(\mathrm{cp})_{2}\right]\left(\mathrm{cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) .{ }^{1}$ A lternatively, more complex ligands derived from several SCNR molecules may be formed such as, $\left[\eta^{2}-\mathrm{S}_{2} \mathrm{C}(\mathrm{H}) \mathrm{NR}\right]^{-}$in $\left[2-\left\{\eta^{2}-\right.\right.$ $\left.\mathrm{S}_{2} \mathrm{CN}(\mathrm{H}) \mathrm{Ph}\right\}-2-\left(\mathrm{PPh}_{3}\right)$-2,1-closo-R hTeB ${ }_{10} \mathrm{H}_{10}$]. ${ }^{2}$ A lthough there have been several reports of complexes containing monodentate ligands derived from pyridine-2-thiol and related compounds (see ref. 3 for a recent review), there has been no report to our knowledge of the structural characterisation of any complex with an η^{1}-thioformamidato-to-metal functionality. Recently we proposed an [$\eta^{1}-\mathrm{SC}(\mathrm{H}) \mathrm{N}$ Ph] $]^{-}$complex, $\left[3-\left\{\eta^{1}\right.\right.$ $\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\}-3,3-\left(\mathrm{PPh}_{2} \mathrm{M} \mathrm{e}\right)_{2}-3,1,2$-closo-R hC $\left.\mathrm{B}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ 1, as an intermediate in the synthesis of the rhodacarborane [3,3($\left.\mathrm{PPh}_{2} \mathrm{M} \mathrm{e}\right)_{2}-3-\mathrm{Cl}-3,1,2$-closo-R hC $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ 2, from $\left[3-\left\{\eta^{2}-\mathrm{SC}(\mathrm{H})\right.\right.$ -NPh\}-3-(PPh h_{3}-3,1,2-closo-R hC $\left.{ }_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right]$ 3, Scheme $1 .{ }^{4} \mathrm{~A}$ study of the parallel reaction with $\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}$ as the phosphine has afforded $\left[3-\left\{\eta^{1}-\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\right\}-3,3-\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}-3,1,2\right.$-closo-R hC 2_{2} $\left.\mathrm{B}_{9} \mathrm{H}_{11}\right]$ 4, Fig. 1. This compound was isolated from the reaction between a ten-fold excess of $\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}(0.109 \mathrm{~g}, 0.790 \mathrm{mmol})$ and a solution of $3(0.050 \mathrm{~g}, 0.079 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at room temperature (r.t.) for 30 min . A fter evaporating the solvent under reduced pressure, the residue was washed with hexane $\left(3 \times 5 \mathrm{~cm}^{3}\right)$ to remove the excess phosphine. The single product was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution affording orange crystals of $\left[3-\left\{\eta^{1}-\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\right\}-3,3-\left(\mathrm{PM} \mathrm{e} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}-3,1,2-\right.$ closo- $\left.\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] \mathbf{4 \cdot 0 . 9 3 \mathrm { CH } _ { 2 } \mathrm { Cl } _ { 2 } \text { , in } 8 3 \% \text { yield (} 0 . 0 4 7 \mathrm { g } \text {). } \dagger \mathrm { An } , ~}$ analogous reaction (r.t., 15 min) with the rhodatelluraborane complex which is formally isoelectronic with 3, i.e. $\left[2-\left\{\eta^{2}\right.\right.$ $\mathrm{SC}(\mathrm{H}) \mathrm{N}$ Ph\}-2-(PPh_{3})-closo-2,1-RhTeB ${ }_{10} \mathrm{H}_{10}$] 5, produced [2-$\left\{\eta^{1}-\mathrm{SC}(\mathrm{H}) \mathrm{N}\right.$ Ph $\}-2,2-\left(\mathrm{PM} \mathrm{e} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}$-2,1-closo-RhTeB ${ }_{10} \mathrm{H}_{10}$] 6, Fig. 2. The rhodatelluraborane 6 was recrystallised from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane solution in a yield of 86%. \ddagger Satisfactory microanalytic data ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were obtained for both 4 and 6 .

Both compounds $\mathbf{4}$ and $\mathbf{6}$ contain rhodium-sulfur bonded η^{1} -

Fig. 1 An ORTEP view of compound 4 with the atom numbering scheme. D isplacement ellipsoids are at the 50% level except for H atoms which are drawn as small spheres of an arbitrary size. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): $\mathrm{Rh}(3)-\mathrm{S}(1)$ 2.4010(8), $\mathrm{R} \mathrm{h}(3)-\mathrm{C}(1)$ 2.246(3), $\mathrm{Rh}(3)-\mathrm{C}(2)$ 2.212(3), $\mathrm{Rh}(3)-\mathrm{B}(4)$ 2.280(4), $\mathrm{Rh}(3)-\mathrm{B}(7)$ 2.216(3), Rh(3)-B(8) 2.274(3), Rh(3)-P(1) 2.3242(10), Rh(3)-P(2) $2.3346(8), \mathrm{C}(1)-\mathrm{C}(2) 1.613(4), \mathrm{S}(1)-\mathrm{C}(3) 1.724(3), \mathrm{C}(3)-\mathrm{N}(1) 1.254(4)$, $\mathrm{N}(1)-\mathrm{C}(41) 1.424(4), \mathrm{C}-\mathrm{B}$ distances range from $\mathrm{C}(1)-\mathrm{B}(6) 1.674(5)$ to $C(2)-B(7) 1.753(4)$ and $B-B$ distances from $B(5)-B(6) 1.752(7)$ to $\mathrm{B}(4)-\mathrm{B}(8) \quad 1.818(5) ; \quad \mathrm{C}(3)-\mathrm{S}(1)-\mathrm{Rh}(3) \quad 109.31(11), \quad \mathrm{N}(1)-\mathrm{C}(3)-\mathrm{S}(1)$ 126.7(2), $\quad \mathrm{C}(41)-\mathrm{N}(1)-\mathrm{C}(3) \quad 119.7(3), \quad \mathrm{S}(1)-\mathrm{Rh}(3)-\mathrm{P}(1) \quad 82.11(3)$, $\mathrm{S}(1)-\mathrm{Rh}(3)-\mathrm{P}(2) 91.51(3), \mathrm{P}(1)-\mathrm{Rh}(3)-\mathrm{P}(2) 95.83(3), \mathrm{S}(1)-\mathrm{Rh}(3)-\mathrm{C}(1)$ 85.64(8), S(1)-R h(3)-C(2) 103.55(8)

Fig. 2 An ORTEP view of compound 6 with the atom numbering scheme. D isplacement ellipsoids are at the 30% level except for H atoms which are drawn as small spheres of an arbitrary size. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): Rh(2)-S(1) 2.4147(10), $\mathrm{Rh}(2)-\mathrm{Te}(1)$ 2.5788(4), $\mathrm{Rh}(2)-\mathrm{B}(3)$ 2.336(4), $\mathrm{Rh}(2)-\mathrm{B}(6)$ 2.362(4), $\mathrm{Rh}(2)-\mathrm{B}(7)$ 2.241(4), $\mathrm{Rh}(2)-\mathrm{B}(11)$ 2.253(4), $\mathrm{Rh}(2)-\mathrm{P}(1)$ 2.3732(10), $\mathrm{Rh}(2)-\mathrm{P}(2)$ 2.3601(10), $\mathrm{S}(1)-\mathrm{C}(2)$ 1.712(4), $\mathrm{C}(2)-\mathrm{N}(3)$ 1.256(5), $\mathrm{N}(3)-\mathrm{C}(31)$ $1.423(5), \mathrm{Te}(1) \cdots \mathrm{N}(3) 2.737(3), \mathrm{Te}-\mathrm{B}$ distances range from $\mathrm{Te}(1)-$ $B(4) 2.288(5)$ to $\mathrm{Te}(1)-\mathrm{B}(3) 2.390(5)$ and $\mathrm{B}-\mathrm{B}$ distances from $\mathrm{B}(10)-$ $\mathrm{B}(12) 1.745(7)$ to $\mathrm{B}(5)-\mathrm{B}(6) 1.896(6) ; \mathrm{C}(2)-\mathrm{S}(1)-\mathrm{Rh}(2)$ 114.83(14), $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(1) 127.7(3), \mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(2) 120.1(3), \mathrm{S}(1)-\mathrm{Rh}(2)-\mathrm{P}(1)$ 87.41(4), $\quad \mathrm{S}(1)-\mathrm{Rh}(2)-\mathrm{P}(2) \quad 81.74(4), \quad \mathrm{P}(1)-\mathrm{Rh}(2)-\mathrm{P}(2) \quad 96.58(3)$, $\mathrm{S}(1)-\mathrm{Rh}(2)-\mathrm{Te}(1)$ 93.27(3)
weak but significant intramolecular Te...N contact, Fig. 2. The S(1)-C(3)-N (1)-C (41) plane in 4 is at an angle of $37.5(3)^{\circ}$ to the best-fit plane containing the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face, while the $\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(31)$ plane in 6 is at an angle of $60.8(3)^{\circ}$ to the TeB_{4} face. The $\mathrm{SC}(\mathrm{H}) \mathrm{N}$ Ph ligand in $\mathbf{6}$ is clearly positioned to facilitate the $\mathrm{Te} \cdots \mathrm{N}$ interaction.

Within each $\mathrm{SC}(\mathrm{H}) \mathrm{N}$ Ph ligand, the bond lengths and most of the bond angles are essentially the same. In both cases the $\mathrm{S}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ atoms are virtually coplanar with torsion angles of $177.5(3)^{\circ}$ in compound 4 and $178.3(3)^{\circ}$ in 6. The $\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{N}(1)$ and $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(41)$ angles in 4 are 126.7(2) and $119.7(3)^{\circ}$, while the corresponding angles in 6 are 127.7(3) and $120.1(3)^{\circ}$. The S-C distances of $1.724(3)$ and $1.712(4) \AA$ respectively in $\mathbf{4}$ and $\mathbf{6}$ are typical of delocalised sp^{2} hybridised carbon-sulfur bonds ($1.720 \AA$), i.e. Ionger than the typical $\mathrm{S}=\mathrm{C}_{\text {sp }^{2}}$ distance of $1.681 \AA$ in thioureas and shorter than the typical S-C sp 3 distance of $1.808 \AA$ in thiols. ${ }^{5}$ The phenyl carbon-to-nitrogen and the methine carbon-to-nitrogen distances are respectively $1.424(4)$ and $1.254(4) \AA$ in 4 and 1.423(5) and 1.256(5) \AA in 6, and are essentially identical. These bond lengths are respectively longer than typical $\mathrm{N}-\mathrm{C}_{\mathrm{ar}}$ bonds and shorter than typical $N=C_{\text {sp }}$ bonds. ${ }^{9}$

The $\mathrm{Te} \cdots \mathrm{N}$ interaction in compound 6 has implications for cluster electron counting. Although the Te $\cdots \mathrm{N}$ distance in 6 is long, $2.737(3) \AA$ compared with a typical Te-N distance (in covalent bonds $2.15 \AA$), it is considerably shorter than the sum of the van der Waals' radii of Te and $N, 3.61 \AA$. Similar $\mathrm{Te} \cdots \mathrm{N}$ distances of 2.702 and $2.752 \AA$ respectively have previously been reported in the compounds bis[2-(4'methoxyphenyl) iminomethinylphenyl]telluride ${ }^{10}$ and 1,6 -bis[(2-butyltelluro)phenyl]-2,5-diazahexa-1,5-diene. ${ }^{11}$ If the donation of electron density from the nitrogen lone pair to the tellurium in the $\mathrm{RhTeB}{ }_{10}$ cage was strong it would imply an electronic character for 6 which is nido-type, but because the Te $\cdots \mathrm{N}$ interaction is weak, a nido structure for 6 is not observed and the closo structure of the system is maintained. It is noteworthy, however, that the $\mathrm{Rh}-\mathrm{S}$ bond length in $6,2.4147(10) \AA$, is significantly longer than that in 4, 2.4010(8) \AA. In overall electron density terms, the relative weakening of the $\mathrm{Rh}-\mathrm{S}$ bond in 6 may be considered to balance the $\mathrm{Te} \cdots \mathrm{N}$ interaction. The rhodium-tellurium distance in $6,2.5788(4) \AA$, is well within the known range of $2.529(4){ }^{12}$ to $2.6172(4) \AA^{13}$ for rhodatelluraboranes and is close to the distance found in $\left[2-\left\{\eta^{2}-\mathrm{S}_{2} \mathrm{CN}\right.\right.$ -(H)Ph\}-2-(PPh_{3})-closo-2,1-RhTeB ${ }_{10} \mathrm{H}_{10}$] [2.5812(3) \AA]..2 The dimensions of the $\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ and $\mathrm{RhTeB}{ }_{10} \mathrm{H}_{10}$ cages, Figs . 1 and 2 respectively, are typical of such structures and require no further comment. ${ }^{14}$

Finally, with respect to the previous suggestion that [$3-\left\{\eta^{1}\right.$ $\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\}-3,3-\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}-3,1,2$-closo- $\left.\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] \mathbf{1}$ is an intermediate in the formation of $\left[3,3-\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}-3-\mathrm{Cl}-3,1,2-\right.$ closo- $\left.\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 2$ from $\left[3-\left\{\eta^{2}-\mathrm{SC}(\mathrm{H}) \mathrm{NPh}\right\}-3-\left(\mathrm{PPh}_{3}\right)-3,1,2-\right.$ closo-RhC $\left.{ }_{2} \mathrm{~B}_{\mathrm{g}} \mathrm{H}_{11}\right]$ 3, ${ }^{4}$ Scheme 1, we wish to report that the rhodacarborane 1 has now been isolated from this reaction in 70% yield and characterised spectroscopically. The formation of the rhodium-chloride containing compounds [3-Cl-3,3($\mathrm{PPh}_{2} \mathrm{Me}$ e) 2 -3,1,2-closo- $\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$] 2 (quantitative yield) or [$3-\mathrm{Cl}-3,3-\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}-3,1,2$-closo- $\left.\mathrm{RhC}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right] 7$ (16% yield) is observed when the complexes $\mathbf{1}$ and $\mathbf{4}$ respectively are refluxed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for 48 h .

Acknowledgements

The generous loan of $R \mathrm{~h}$ salts by Johnson M atthey plc is gratefully acknowledged (T. R. S.). G. F. thanks the N atural Sciences and Engineering Research Council (Canada) for G rants in A id of Research, P. M CE. thanks Forbairt, Ireland for support. Thanks are due to Dr. B. Štíbr and his colleagues in the Czech Republic for discussions. We wish to thank a referee for drawing our attention to ref. 3.

References

1 W. M ei, L. Shiwei, B. M eizhi and G. H efu, J. Organomet. Chem., 1993, 447, 227.
2 G. Ferguson, D. O'Connell and T. R. Spalding, Acta Crystallogr., Sect. C, 1994, 50, 1432.

3 E. S. R aper, C oord. Chem. Rev., 1996, 153, 199.
4 G. Ferguson, J. Pollock, P. A. M cEneaney, D. P. O'Connell, T. R. Spalding, J. F. G allagher, R. M aciás and J. D. K ennedy, Chem. Commun., 1996, 679.
5 E. J. Gabe, Y. LePage, J. P. Charland, F. J. Lee and P. S. White, J. A ppl. C rystallogr., 1989, 22, 384.

6 G. M. Sheldrick, SHELXL 93, A program for the refinement of crystal structures, U niversity of G öttingen, 1993.
7 C. K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge N ational L aboratory, Oak Ridge, TN, 1976.
8 A. L. Spek, M olecular Graphics Program, U niversity of U trecht, 1994.

9 A. G. Orpen, L. Brammer, F. H. Allen, O. K ennard, D. G. Watson and R. Taylor, in Structure Correlation, eds. H.-B. Burgi and J. D. D unitz, VCH, Weinheim, 1994, vol. 2, A ppendix.
10 V. I. M inkin, I. D. Sadekov, A. A. M aksimenko, O. E. K ompan and Yu. T. Struchkov, J. Organomet. Chem., 1991, 402, 331.

11 N. A I-Salim, T. A. H amor and W. R. M cWhinnie, J. Chem. Soc., C hem. Commun., 1986, 453.
12 Faridoon, M. M cG rath, T. R. Spalding, X. L. R. Fontaine, J. D. K ennedy and M. Thornton-Pett, J. Chem. Soc., D alton Trans., 1990, 1819.

13 Faridoon, O. Ni Dhubhghaill, T. R. Spalding, G. Ferguson, B. K aitner, X. L. R. Fontaine, J. D. K ennedy and D. Reed, J. Chem. Soc., D alton Trans., 1988, 2739.
14 See, for example, M. F. H awthorne, J. O rganomet. Chem., 1975, 100, 97 and refs. therein; R. N. G rimes, in C omprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982 and refs. therein.

Received 11th September 1996; Communication 6/06276H

[^0]: \dagger Crystal data for 4. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~B}_{9} \mathrm{NP}_{2} \mathrm{R} \mathrm{hS} \cdot 0.93 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, orange platelet, $0.39 \times 0.26 \times 0.12 \mathrm{~mm}, \mathrm{M}=726.80$, monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}, \mathrm{a}=10.0955(12)$, $b=21.897(2), c=15.960(2) \AA, \beta=96.599(9)^{\circ}, U=3504.6(6) \AA^{3}, Z=4$, $D_{c}=1.39 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo-K} \alpha)=0.7107 \AA, \mu(\mathrm{Mo} 0-\mathrm{K} \alpha)=0.81 \mathrm{~mm}^{-1}$, $F(000)=1484, T=294 \mathrm{~K}$. D ata for 8046 reflections were measured, of which 7625 reflections were unique $\left(\mathrm{R}_{\text {int }}=0.009\right)$ and of these the 5575 with $\mathrm{I}>2 \sigma(\mathrm{I})$ were labelled 'observed'. $\mathrm{R}\left(\mathrm{F}_{\mathrm{o}}\right)=0.0348, \mathrm{R}^{\prime}\left(\mathrm{F}^{2}\right)=0.0885$ for all measured data where $R\left(F_{0}\right)=\Sigma| | F_{0}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|, R^{\prime}\left(F^{2}\right)=$ $\left\{\Sigma\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \Sigma\left(w F_{o}{ }^{2}\right)\right\}^{\frac{1}{2}}$, and $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right]$.

